If you have been trading Forex for a while you might have noticed how your broker has a particular timeframe that often does not match the timeframe of the data sources you have for simulations. To solve this problem you can either perform simulations using the data and then transform your broker’s data to match the reference data timeframe or you can change the back-testing data timeframe to match your brokers data. In any case, doing data timezone manipulations will definitely come in handy when you’re back-testing and trading using Forex data. On today’s post I want to show you how you can easily perform these manipulations using the Pandas library in python which will help ease your data manipulation needs when doing research or Forex trading.
–
#!/usr/bin/python # Daniel Fernandez 2016 # http://mechanicalforex.com # https://asirikuy.com import pandas as pd import pytz def main(): historyFilePath = "data.csv" df = pd.read_csv(historyFilePath1, index_col=0, parse_dates=True, dayfirst=True) df.index = df.index.tz_localize(pytz.timezone('UTC')).tz_convert(pytz.timezone('Europe/Madrid')) df.index = df.index.tz_localize(None) df.to_csv('modified_data.csv', date_format='%d/%m/%y %H:%M', header = False) ################################## ### MAIN #### ################################## if __name__ == "__main__": main()
–
The Forex market is very particular in that it completely lacks a central exchange. This means that data timestamps have no universally correct value – since there is no one who centralizes transactions – and therefore brokers can choose whichever timeframe they consider most convenient (which is most commonly their local timeframe). The same thing can happen with FX data providers. Sometimes your data will be in UTC, other times in a different GMT shift with DST (daylight savings), etc. Converting timeframes is often a difficult task because most of the time it is not simply a matter of adding or subtracting hours but you must also ensure you subtract the correct number of hours depending on whether you’re on or outside daylight savings. This is why automated tools for data processing are so convenient because they can account for all of these things automatically.
The code above uses the Pandas library to convert an FX data file from UTC to the Europe/Madrid timeframe which is basically the GMT +1/+2 timezone. Line 13 loads the data while line 14 perform the time zone change. We use the pytz library to first declare the timezone that the data belongs to – in this case UTC – and we then use the tz_convert function to convert our data to a desired timezone, which in this case is Europe/Madrid. After this you can see that I have also performed a tz_localize(None) which simply removes the timezone localization from the data. I have found this is often useful as if you want to perform any further data manipulations there are several functions that are hostile to the timezone localization introduced by the conversion process. This tz_localize(None) does not undo the change you performed before but simply makes the pandas object no longer “timezone aware”. You can choose from a wide variety of different timezones as shown below.
–
Africa/Abidjan Africa/Accra Africa/Addis_Ababa Africa/Algiers Africa/Asmara Africa/Asmera Africa/Bamako Africa/Bangui Africa/Banjul Africa/Bissau Africa/Blantyre Africa/Brazzaville Africa/Bujumbura Africa/Cairo Africa/Casablanca Africa/Ceuta Africa/Conakry Africa/Dakar Africa/Dar_es_Salaam Africa/Djibouti Africa/Douala Africa/El_Aaiun Africa/Freetown Africa/Gaborone Africa/Harare Africa/Johannesburg Africa/Juba Africa/Kampala Africa/Khartoum Africa/Kigali Africa/Kinshasa Africa/Lagos Africa/Libreville Africa/Lome Africa/Luanda Africa/Lubumbashi Africa/Lusaka Africa/Malabo Africa/Maputo Africa/Maseru Africa/Mbabane Africa/Mogadishu Africa/Monrovia Africa/Nairobi Africa/Ndjamena Africa/Niamey Africa/Nouakchott Africa/Ouagadougou Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu Africa/Tripoli Africa/Tunis Africa/Windhoek America/Adak America/Anchorage America/Anguilla America/Antigua America/Araguaina America/Argentina/Buenos_Aires America/Argentina/Catamarca America/Argentina/ComodRivadavia America/Argentina/Cordoba America/Argentina/Jujuy America/Argentina/La_Rioja America/Argentina/Mendoza America/Argentina/Rio_Gallegos America/Argentina/Salta America/Argentina/San_Juan America/Argentina/San_Luis America/Argentina/Tucuman America/Argentina/Ushuaia America/Aruba America/Asuncion America/Atikokan America/Atka America/Bahia America/Bahia_Banderas America/Barbados America/Belem America/Belize America/Blanc-Sablon America/Boa_Vista America/Bogota America/Boise America/Buenos_Aires America/Cambridge_Bay America/Campo_Grande America/Cancun America/Caracas America/Catamarca America/Cayenne America/Cayman America/Chicago America/Chihuahua America/Coral_Harbour America/Cordoba America/Costa_Rica America/Creston America/Cuiaba America/Curacao America/Danmarkshavn America/Dawson America/Dawson_Creek America/Denver America/Detroit America/Dominica America/Edmonton America/Eirunepe America/El_Salvador America/Ensenada America/Fort_Wayne America/Fortaleza America/Glace_Bay America/Godthab America/Goose_Bay America/Grand_Turk America/Grenada America/Guadeloupe America/Guatemala America/Guayaquil America/Guyana America/Halifax America/Havana America/Hermosillo America/Indiana/Indianapolis America/Indiana/Knox America/Indiana/Marengo America/Indiana/Petersburg America/Indiana/Tell_City America/Indiana/Vevay America/Indiana/Vincennes America/Indiana/Winamac America/Indianapolis America/Inuvik America/Iqaluit America/Jamaica America/Jujuy America/Juneau America/Kentucky/Louisville America/Kentucky/Monticello America/Knox_IN America/Kralendijk America/La_Paz America/Lima America/Los_Angeles America/Louisville America/Lower_Princes America/Maceio America/Managua America/Manaus America/Marigot America/Martinique America/Matamoros America/Mazatlan America/Mendoza America/Menominee America/Merida America/Metlakatla America/Mexico_City America/Miquelon America/Moncton America/Monterrey America/Montevideo America/Montreal America/Montserrat America/Nassau America/New_York America/Nipigon America/Nome America/Noronha America/North_Dakota/Beulah America/North_Dakota/Center America/North_Dakota/New_Salem America/Ojinaga America/Panama America/Pangnirtung America/Paramaribo America/Phoenix America/Port-au-Prince America/Port_of_Spain America/Porto_Acre America/Porto_Velho America/Puerto_Rico America/Rainy_River America/Rankin_Inlet America/Recife America/Regina America/Resolute America/Rio_Branco America/Rosario America/Santa_Isabel America/Santarem America/Santiago America/Santo_Domingo America/Sao_Paulo America/Scoresbysund America/Shiprock America/Sitka America/St_Barthelemy America/St_Johns America/St_Kitts America/St_Lucia America/St_Thomas America/St_Vincent America/Swift_Current America/Tegucigalpa America/Thule America/Thunder_Bay America/Tijuana America/Toronto America/Tortola America/Vancouver America/Virgin America/Whitehorse America/Winnipeg America/Yakutat America/Yellowknife Antarctica/Casey Antarctica/Davis Antarctica/DumontDUrville Antarctica/Macquarie Antarctica/Mawson Antarctica/McMurdo Antarctica/Palmer Antarctica/Rothera Antarctica/South_Pole Antarctica/Syowa Antarctica/Vostok Arctic/Longyearbyen Asia/Aden Asia/Almaty Asia/Amman Asia/Anadyr Asia/Aqtau Asia/Aqtobe Asia/Ashgabat Asia/Ashkhabad Asia/Baghdad Asia/Bahrain Asia/Baku Asia/Bangkok Asia/Beirut Asia/Bishkek Asia/Brunei Asia/Calcutta Asia/Choibalsan Asia/Chongqing Asia/Chungking Asia/Colombo Asia/Dacca Asia/Damascus Asia/Dhaka Asia/Dili Asia/Dubai Asia/Dushanbe Asia/Gaza Asia/Harbin Asia/Hebron Asia/Ho_Chi_Minh Asia/Hong_Kong Asia/Hovd Asia/Irkutsk Asia/Istanbul Asia/Jakarta Asia/Jayapura Asia/Jerusalem Asia/Kabul Asia/Kamchatka Asia/Karachi Asia/Kashgar Asia/Kathmandu Asia/Katmandu Asia/Kolkata Asia/Krasnoyarsk Asia/Kuala_Lumpur Asia/Kuching Asia/Kuwait Asia/Macao Asia/Macau Asia/Magadan Asia/Makassar Asia/Manila Asia/Muscat Asia/Nicosia Asia/Novokuznetsk Asia/Novosibirsk Asia/Omsk Asia/Oral Asia/Phnom_Penh Asia/Pontianak Asia/Pyongyang Asia/Qatar Asia/Qyzylorda Asia/Rangoon Asia/Riyadh Asia/Saigon Asia/Sakhalin Asia/Samarkand Asia/Seoul Asia/Shanghai Asia/Singapore Asia/Taipei Asia/Tashkent Asia/Tbilisi Asia/Tehran Asia/Tel_Aviv Asia/Thimbu Asia/Thimphu Asia/Tokyo Asia/Ujung_Pandang Asia/Ulaanbaatar Asia/Ulan_Bator Asia/Urumqi Asia/Vientiane Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinburg Asia/Yerevan Atlantic/Azores Atlantic/Bermuda Atlantic/Canary Atlantic/Cape_Verde Atlantic/Faeroe Atlantic/Faroe Atlantic/Jan_Mayen Atlantic/Madeira Atlantic/Reykjavik Atlantic/South_Georgia Atlantic/St_Helena Atlantic/Stanley Australia/ACT Australia/Adelaide Australia/Brisbane Australia/Broken_Hill Australia/Canberra Australia/Currie Australia/Darwin Australia/Eucla Australia/Hobart Australia/LHI Australia/Lindeman Australia/Lord_Howe Australia/Melbourne Australia/NSW Australia/North Australia/Perth Australia/Queensland Australia/South Australia/Sydney Australia/Tasmania Australia/Victoria Australia/West Australia/Yancowinna Brazil/Acre Brazil/DeNoronha Brazil/East Brazil/West CET CST6CDT Canada/Atlantic Canada/Central Canada/East-Saskatchewan Canada/Eastern Canada/Mountain Canada/Newfoundland Canada/Pacific Canada/Saskatchewan Canada/Yukon Chile/Continental Chile/EasterIsland Cuba EET EST EST5EDT Egypt Eire Etc/GMT Etc/GMT+0 Etc/GMT+1 Etc/GMT+10 Etc/GMT+11 Etc/GMT+12 Etc/GMT+2 Etc/GMT+3 Etc/GMT+4 Etc/GMT+5 Etc/GMT+6 Etc/GMT+7 Etc/GMT+8 Etc/GMT+9 Etc/GMT-0 Etc/GMT-1 Etc/GMT-10 Etc/GMT-11 Etc/GMT-12 Etc/GMT-13 Etc/GMT-14 Etc/GMT-2 Etc/GMT-3 Etc/GMT-4 Etc/GMT-5 Etc/GMT-6 Etc/GMT-7 Etc/GMT-8 Etc/GMT-9 Etc/GMT0 Etc/Greenwich Etc/UCT Etc/UTC Etc/Universal Etc/Zulu Europe/Amsterdam Europe/Andorra Europe/Athens Europe/Belfast Europe/Belgrade Europe/Berlin Europe/Bratislava Europe/Brussels Europe/Bucharest Europe/Budapest Europe/Chisinau Europe/Copenhagen Europe/Dublin Europe/Gibraltar Europe/Guernsey Europe/Helsinki Europe/Isle_of_Man Europe/Istanbul Europe/Jersey Europe/Kaliningrad Europe/Kiev Europe/Lisbon Europe/Ljubljana Europe/London Europe/Luxembourg Europe/Madrid Europe/Malta Europe/Mariehamn Europe/Minsk Europe/Monaco Europe/Moscow Europe/Nicosia Europe/Oslo Europe/Paris Europe/Podgorica Europe/Prague Europe/Riga Europe/Rome Europe/Samara Europe/San_Marino Europe/Sarajevo Europe/Simferopol Europe/Skopje Europe/Sofia Europe/Stockholm Europe/Tallinn Europe/Tirane Europe/Tiraspol Europe/Uzhgorod Europe/Vaduz Europe/Vatican Europe/Vienna Europe/Vilnius Europe/Volgograd Europe/Warsaw Europe/Zagreb Europe/Zaporozhye Europe/Zurich GB GB-Eire GMT GMT+0 GMT-0 GMT0 Greenwich HST Hongkong Iceland Indian/Antananarivo Indian/Chagos Indian/Christmas Indian/Cocos Indian/Comoro Indian/Kerguelen Indian/Mahe Indian/Maldives Indian/Mauritius Indian/Mayotte Indian/Reunion Iran Israel Jamaica Japan Kwajalein Libya MET MST MST7MDT Mexico/BajaNorte Mexico/BajaSur Mexico/General NZ NZ-CHAT Navajo PRC PST8PDT Pacific/Apia Pacific/Auckland Pacific/Chatham Pacific/Chuuk Pacific/Easter Pacific/Efate Pacific/Enderbury Pacific/Fakaofo Pacific/Fiji Pacific/Funafuti Pacific/Galapagos Pacific/Gambier Pacific/Guadalcanal Pacific/Guam Pacific/Honolulu Pacific/Johnston Pacific/Kiritimati Pacific/Kosrae Pacific/Kwajalein Pacific/Majuro Pacific/Marquesas Pacific/Midway Pacific/Nauru Pacific/Niue Pacific/Norfolk Pacific/Noumea Pacific/Pago_Pago Pacific/Palau Pacific/Pitcairn Pacific/Pohnpei Pacific/Ponape Pacific/Port_Moresby Pacific/Rarotonga Pacific/Saipan Pacific/Samoa Pacific/Tahiti Pacific/Tarawa Pacific/Tongatapu Pacific/Truk Pacific/Wake Pacific/Wallis Pacific/Yap Poland Portugal ROC ROK Singapore Turkey UCT US/Alaska US/Aleutian US/Arizona US/Central US/East-Indiana US/Eastern US/Hawaii US/Indiana-Starke US/Michigan US/Mountain US/Pacific US/Pacific-New US/Samoa UTC Universal W-SU WET Zulu
–
I would also like to point out that the loading of the data can also be a tricky subject. In this case the data is loaded from a csv and the loaded data contains the timestamps in the first column in a format where the day is given first (like dd/mm/yyyy HH:MM). Pandas will attempt to parse the dates automatically, keeping in mind that the date is the first value given within the timestamp. However if you have a different file format – for example mm/dd/yyyy – you should remove the dayFirst option as this will make Pandas mistakenly assume that the first value is a day value. You can also change the index_col from 0 to another value if your timestamps are not located on the first column.
It is also worth mentioning that the above process for loading data is particularly slow since the pandas library has to guess what the exact data format you have given might be. It may often be quicker to load the data without doing data parsing and then use a function that parses dates according to the specific date format you want. Remember that you can always use the set_index function of a Pandas dataframe to set its index and you can obtain that index using a parsing function that you have tailor made for your data. If you’re working with 1M or tick data this is fundamental since otherwise you might need to wait for hours before files are fully loaded into memory (yes, pandas date parsing can be that slow).
–
–
As you may have correctly guesses data manipulations in Forex trading can be complicated but thanks to libraries like Pandas everything can become much easier to do and even tedious things like time zone changes can be carried out very easily. Evenmore things like changing incoming data from a broker to match a desired timezone can become as easy as a few lines of code. If you would like to learn more about modifying data and using it to simulate trading systems – even using a trading framework that can correct a live broker’s data to match any desired timezone – please consider joining Asirikuy.com, a website filled with educational videos, trading systems, development and a sound, honest and transparent approach towards automated trading.strategies
Thanks for this article Daniel it was timely for me as I was about to look at converting the Asirikuy data to my broker TZ
Thanks for writing. Glad it was useful! Make sure you comment on the forum if you have any additional questions.